8.	8. A structural steel rod has a radius of 10 mm and leng	ructural steel rod has a radius of 10 mm and length of	
	1.0 m. A 100 kN force stretches it along its length. Young's modulus of structural steel is 2 × 10 ¹¹ Nm ⁻² . The percentage		
	strain is about [Online May 7, 2	train is about [Online May 7, 2012]	
	(a) 0.16% (b) 0.32% (c) 0.08% (d) 0.24	%	

(a) 30 kg (b) 100 kg (c) 100 kg

18. (a) Given:
$$F = 100 \text{ kN} = 10^5 \text{ N}$$

 $Y = 2 \times 10^{11} \text{ Nm}^{-2}$
 $\ell_0 = 1.0 \text{ m}$
radius $r = 10 \text{ mm} = 10^{-2} \text{ m}$

 $= \frac{10^5}{\pi r^2 Y} = \frac{10^5}{3.14 \times 10^{-4} \times 2 \times 10^{11}} = \frac{1}{628}$

Therefore % strain = $\frac{1}{628} \times 100 = 0.16\%$

From formula,
$$Y = \frac{\text{Stress}}{\text{Strain}}$$

 $\ell_0 = 1.0 \, \text{m}$

$$\Rightarrow Strain = \frac{Stress}{V} = \frac{F}{4V}$$